Analytic smoothing effect for the Schrödinger equation with long-range perturbation
نویسندگان
چکیده
منابع مشابه
Analytic Smoothing Effect for the Schrödinger Equation with Long-Range Perturbation
We study microlocal analytic singularity of solutions to Schrödinger equation with analytic coefficients. Using microlocal weight estimate developped for estimating the phase space tunneling, we prove microlocal smoothing estimates that generalize results by L. Robbiano and C. Zuily. We suppose the Schrödinger operator is a long-range type perturbation of the Laplacian, and we employ positive c...
متن کاملAnalytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملA remark on the Schrödinger smoothing effect
— We prove the equivalence between the smoothing effect for a Schrödinger operator and the decay of the associate spectral projectors. We give two applications to the Schrödinger operator in dimension one. Résumé. — On donne une caractérisation de l’effet régularisant pour un opérateur de Schrödinger par la décroissance de ses projecteurs spectraux. On en déduit deux applications à l’opérateur ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDirect perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.
A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2006
ISSN: 0010-3640,1097-0312
DOI: 10.1002/cpa.20112